beginning to understand how AIS disrupt sport fisheries

Bethany Bethke • MN DNR
2017 MAISRC Showcase
A Collaborative Project
Infestations Over Time

WATER BODIES

WATER BODIES

[Graph showing the increase in infestations over time from 2000 to 2015.]
Known Impacts
Unknown Impacts
What’s the problem?
What’s the problem?
Or...?
Study Goals

• Across varying stages of invasion:
 1. Assess small fish growth
 2. Compare fish food habits
Our Large Lakes

- Cass
- Kabetogama
- Lake of the Woods
- Mille Lacs
- Rainy
- Red
- Vermilion
- Winnibigoshish
Our Large Lakes

- Cass
- Kabetogama
- Lake of the Woods
- Mille Lacs
- Rainy
- Red
- Vermilion
- Winnibigoshish
Our Large Lakes
Leveraging Large Lake Sampling
What we’re after
How we’ll get it

Field sampling
- Summer
 - Seine for small fish
 - Collect invertebrates by any means possible
- Fall
 - DNR netting for adult fish
Bigger is Better

Larger fish:
• Eat a wider variety of prey
• Can escape predators better
• Have more energy reserves for winter
Small fish growth

• Compare sizes:
 • Walleye (age-0)
 • Yellow Perch

• Historical data
 • 1980’s onward
 • Before/after invasion

• Does the presence of zebra mussels or spiny waterflea lead to reduced growth?
Tissues tell a story
Tissues tell a story
Tissues tell a story
Tissues tell a story

Nitrogen

Offshore Carbon

Nearshore Carbon
You are what you eat

Diagram showing carbon and nitrogen isotope ratios for different species:
- Cisco
- Walleye
- Yellow Perch
- Northern Pike
- Bluegill
- Zooplankton
- Nearshore invertebrates
You are what you eat
Informing Management

• What can we expect to happen to walleye when an invasive is found?
 • Other fish?
• Do the effects vary by lake?
• Is there a key component of a lake that helps to buffer against AIS effects?
Thanks!

• Funding
 • Environmental and Natural Resources Trust Fund
 • Federal Aid - Sport Fish Restoration

• Field work
 • Large Lake Staff
 • DNR and Red Lake Nation

• Photo credits:
 • Zebra mussel: Nature and Outdoor Tourism Ontario
 • Sport Fish: fws.gov, fishingplanet.wiki
 • Spiny waterflea: kids.invadingspecies.com

• Plankton: planktonmania.org
• YOY walleye: fishingparadise3d.com
• Midge: thecatchandthehatch.com
QUESTIONS AND DISCUSSION
More about isotopes
Heavy and Light Atoms

Carbon – 12

Carbon – 13
Isotopes are Naturally Occurring

Stable Isotope Ecology Brian Fry
“Heavy” and “Light” Atoms

^{13}C

- A regular Carbon atom has:
 - 6 Electrons
 - 6 Protons
 - 6 Neutrons
 - An atomic mass of 12 (^{12}C)

- A carbon isotope has:
 - 6 Electrons
 - 6 Protons
 - 6 Neutrons
 - An atomic mass of 13 (^{13}C)

^{15}N

- A regular Nitrogen atom has:
 - 7 Electrons
 - 7 Protons
 - 7 Neutrons
 - An atomic mass of 14 (^{14}N)

- A carbon isotope has:
 - 7 Electrons
 - 7 Protons
 - 8 Neutrons
 - An atomic mass of 14 (^{14}N)
Other invasive species

• Rusty Crayfish
• Banded Mystery Snails
• Starry Stonewort