Assessing risks to inform AIS management

Adam Kokotovich1 and Kelly Pennington2

1 Post-doctoral research associate, MAISRC, University of Minnesota, koko0013@umn.edu

2 Aquatic Invasive Species Prevention Consultant, Minnesota DNR, Kelly.Pennington@state.mn.us
What is risk assessment and why is it important?

- Which AIS should be prioritized for management?
- Where should management focus?
- What is the risk of _____?

Risk assessment is central to decision making concerning AIS
Outline

• Introduction to risk assessment
 – How it informs AIS decision making
• Invasive Asian carp example
• Bait harvest example
• Questions and discussion
Risk analysis

Risk Assessment
 Analytically-based

Risk Management
 Policy-based

Risk Communication
Simple definition of risk

Risk = Exposure x Consequence
Simple definition of risk

Risk = Exposure x Consequence
Simple definition of risk

Risk = Exposure x Consequence
Simple definition of risk

Risk = Exposure x Consequence
Simple definition of risk

Risk = Exposure \times \text{Consequence}
Ecological Risk Assessment (ERA) for AIS

Problem Formulation
- What is the context?
- What could cause harm? (stressor = AIS)
- What is valued in the uninvaded system? (e.g., species or recreational use)
- How could they interact? (risk pathways)

Analysis
- Exposure Analysis: Likelihood of introduction, establishment, or spread of AIS
- Effects Analysis: Probability and severity of consequences

Risk characterization
- Characterize risk and summarize findings for decision making
How is ERA used to inform AIS decision making?

- Risk is a product of: Exposure & Effect
- Identifies points for management
 - Pathways for introduction
 - Susceptible environments
- Prompts discussion about what change is undesirable
- Helps determine research needs

Diagram:
- Likelihood of introduction
- Magnitude of ecological consequences
Risk assessment best practices

• Right participation
 – What is valued?
 – What are risk pathways?
 – Are the results trusted?
• Correct scope (spatial & temporal)
• Properly deal with uncertainty
• Right scale of ERA
 – Formal risk assessment by agency
 – Less formal brainstorming of stressors, valued entities, risk pathways
Invasive Asian carp

- Asian carp = Bighead, silver, black, grass
- Bighead and silver escaped to wild in 1970s
 - Imported to southern US for aquaculture
- Bighead and silver carp disrupt ecosystems by consuming plankton & macroinvertebrates
- Silver carp jump up to 10 feet when startled
- 2014 MN findings in Mississippi river
 - Cottage Grove (silver & bighead), Lake Pepin (bighead), Hastings (silver), mouth of St. Croix (bighead)
ERA and invasive Asian carp

• Existing work has largely focused on potential spread (exposure) and not consequences (effects)
 – What are potential adverse effects given establishment?
 – What waterways, species, and areas of the state are of most concern?
 – What management should be pursued?

• Create robust list of potential adverse effects to analyze
 – Conduct focus groups with managers and stakeholders
Risk assessment

• A structured process for supporting decision making
Risk assessment characteristics

- Participatory – stakeholders, deliberative
- Evidence-based – analytic

NRC 1996
Risk assessment characteristics

- Participatory – stakeholders, deliberative
- Evidence-based – analytic
- Policy informative – relevant
- Generates new information – priorities, gaps
- Never-ending – iterative (but with endpoints)
Example: bait harvest

• AIS movement during bait harvest in infested waters

• Can we refine policies governing this activity?
 – Without increasing AIS risk or difficulty of enforcement
 – While simplifying operations and applying statewide
Bait harvest in infested waters

• Convene stakeholders
• Model bait harvest processes
 – identify activities with risk of AIS transfer, and how to mitigate
Example: communications plan

• How can I design an effective outreach campaign to help prevent the spread of aquatic invasive species?
Risk assessment to inform outreach

• How could risk assessment inform a communications plan?
 – Convene stakeholders
 – Brainstorm and prioritize AIS hazards
 • Develop models for exposure for high-priority hazards
Establishment of zebra mussels in lake

- Adults present, dense
- Physical conditions
- Ecological conditions

- ZMs survive
- People introduce adult ZMs
- People introduce juvenile ZM
- Natural transport introduces ZM juveniles
- Upstream established ZM
Establishment of zebra mussels in lake

- Adults present, dense
- Physical conditions
- Ecological conditions

Intermediate steps to establishment

- ZMs survive
- People introduce adult ZMs
- People introduce juvenile ZM
- Natural transport introduces ZM juveniles
- Upstream established ZM
Establishment of zebra mussels in lake

- Adults present, dense
 - ZMs survive
 - People introduce adult ZMs
 - People introduce juvenile ZM

- Physical conditions

- Ecological conditions
 - Natural transport introduces ZM juveniles
 - Upstream established ZM

Consider mitigating factors – riffles, wetlands?
Establishment of zebra mussels in lake

- Adults present, dense
 - ZMs survive
 - People introduce adult ZMs
 - People introduce juvenile ZM
 - Natural transport introduces ZM juveniles
 - Upstream established ZM
 - Physical conditions
 - Ecological conditions
Conclusions

• ERA is a useful tool at a variety of scales
 – Identify potential risk pathways
 – Identify most consequential potential adverse effects

• Key points to keep in mind
 – Participation, scope, uncertainty, scale
Questions?

Acknowledgements